Computational
Complexity

Classifying problems
by hardness

In the 1930's, Church, Turing and others proposed
the “right” notion of algorithm and studied what is
recursive, i.e., what can be solved at all by computers.
Later, with the first computers, the efficiency of algorithms
became crucial. Computational complexity was born.

Algorithms running

in exponential time (2") are not
considered efficient. Hartmanis and Stearns
show in 1965 that EXP # P.

.. - NP-complete. ..

O O
o Karp 1972,
o e Garey and Johnson 1979,
o Partition and many others .
o Thousands of important problems are NP-complete! °
° 3D matching Knapsack If one can be solved efficiently, then P=NP. °

Exact cover

H ring
C

cover .
amilton Set coverin
\ ircuit \ /
Set Packing Node cover

Chromatic number

:. \ T

3 SAT Integer programming Clique

(Satisfiability of Boolean formulas) . A

Cook, Levin 1971 SAT is "harder" than any problem in NP: it is NP-complete

P=NP"~

The major question in
computational complexity

If P # NP then there are problems in NP\P that are not NP-complete (Ladner 1975)

P

"Polynomial time"
is the class of
problems having
"efficient” algorithms.
First identified by
Cobham and Edmonds
in 1965

Does randomness OrisBPP =P
speed up algorithms? ("derandomisation")?

Is EXP in P/poly?
(unlikely)
If not, "hard" functions
can be used
to derandomise BPP

Non-uniformity = one algorithm (i.e. one Boolean circuit) for each input length.
Circuits might be easier to study.
The hope: proving NP not in P/poly.

Rec EXP NP BPP

problems that can Exponential Nondeterministic Polynomial time: Bounded-error Probabilistic
be solved by computers time solutions can be verified efficiently Polynomial time

